Effect of 1,4-Naphthoquinone Annelation on the Conformational Behaviour of Carbonyl- and Methano-bridged Cyclodecadiene Derivatives

Shuntaro Mataka, ${ }^{*, a}$ Seung Taeg Lee, ${ }^{\boldsymbol{b}}$ Yuriko Tamura, ${ }^{b}$ Akihiko Tsuge ${ }^{a}$ and Masashi Tashīro ${ }^{a}$
${ }^{\text {a }}$ Institute of Advanced Material Study, Graduate School of Engineering Sciences, 6-1, Kasuga-koh-en, Kasuga-shi, Fukuoka 816, Japan
${ }^{b}$ Department of Molecular Science and Technology, Graduate School of Engineering Sciences, 6-1, Kasuga-koh-en, Kasuga-shi, Fukuoka 816, Japan

Abstract

The $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ oxidation of hexahydro-7,16-methanodinaphtho[2,3-a:2', $3^{\prime}-f$] cyclodecene derivative 2, produced two bis-(1,4 -naphthoquinone)s, 7 and 9, and monoquinone compound 8 . Benzonaphtho derivative 3 gave two 1,4-naphthoquinone derivatives, 10 and 11, on oxidation.

Flexible compounds 7-11 showed temperature-dependent ${ }^{1} \mathrm{H}$ NMR spectra due to equilibria among chair-boat, twin-chair, and boat-chair conformers, which were ${ }^{1} \mathrm{H}$ NMR spectroscopically characterized. A twin-chair conformer was detected in products 8,9 and 10, but not in compounds 7 and 11. A broad absorption band due to an intramolecular $C-T$ interaction in the twin-chair conformer was observed at $\lambda \sim 400 \mathrm{~nm}$ in the electronic spectra of the monoquinones, 8 and 10, but not in the bis(quinone) 9. Population of the twin-chair conformer increased with removal of the ester group on the bridgehead position. Reduction of the carbonyl group on the bridge also favoured the twin-chair conformation, indicating a repulsive interaction between the ester and the carbonyl group of the 1,4-naphthoquinone moiety. Upon irradiation with sunlight, compound 7 gave the [2+2]-photoadduct 15 .

It was previously reported ${ }^{1.2}$ that benzo-, naphtho- and quinoxalino-annelated compounds, 1-6, invert among their chair-boat, twin-chair, and boat-chair conformers [these conformers are abbreviated ($\mathrm{C}-\mathrm{B}$), ($\mathrm{T}-\mathrm{C}$) and (B-C), respectively] (Scheme 1). For the quinoxalino derivatives, 4 and 5, the corresponding ($\mathrm{T}-\mathrm{C}$)s were detected by ${ }^{1} \mathrm{H}$ NMR spectroscopy, together with ($\mathrm{C}-\mathrm{B}$) and ($\mathrm{B}-\mathrm{C}$), ${ }^{1}$ but not in the dibenzo-, dinaphtho-, and benzonaphtho-annelated analogues, 1, 2, and 3. ${ }^{2}$ This is tentatively explained by assuming that by replacing the electron-rich benzene and naphthlene ring of compounds $1-$ 3 with electron-deficient quinoxalines, the $\pi-\pi$ electronic repul-

Scheme 1 1: $\mathrm{Ar}^{1}=\mathrm{Ar}^{2}=\mathrm{B} \quad 2 ; \mathrm{Ar}^{1}=A r^{2}=2,3-\mathrm{N} 3 ; \quad \mathrm{Ar}^{1}=\mathrm{B}$, $\mathrm{Ar}^{2}=2,3-\mathrm{N} \mathrm{4} ; \mathrm{Ar}^{1}=\mathrm{Ar}^{2}=2,3-\mathrm{QX} \mathrm{5} ; \mathrm{Ar}^{1}=2,3-\mathrm{QX}, \mathrm{Ar}^{2}=\mathrm{B} \mathbf{6}$; $\mathrm{Ar}^{1}=2,3-\mathrm{QX} . \mathrm{Ar}^{2}=2,3-\mathrm{N} 7 ; \mathrm{Ar}^{1}=\mathrm{Ar}^{2}=2,3-(1,4-\mathrm{NQ}) 8 ; \mathrm{Ar}^{1}=$ $2.3-(1.4-\mathrm{NQ}) . \mathrm{Ar}^{2}=2,3-\mathrm{N} 9 ; \mathrm{Ar}^{1}=2,3-(1,4-\mathrm{NQ}), \mathrm{Ar}^{2}=6,7-(1,4-\mathrm{NQ})$ $10 ; \mathrm{Ar}^{1}=2.3-(1,4-\mathrm{NQ}), \mathrm{Ar}^{2}=\mathrm{B} 11 ; \mathrm{Ar}^{1}=6,7-(1,4-\mathrm{NQ}), \mathrm{Ar}^{2}=\mathrm{B}$
Letters B, N. QX, and NQ mean benzo, naphtho, quinoxalino, and naphthoquinono, respectively.
sion between two facing aromatic rings would be reduced, stabilizing ($\mathrm{T}-\mathrm{C}$) in compounds 4 and 5 .

It seemed of interest to investigate the conformational behaviour of methanocyclodecadiene systems annexed by an electron-deficient 1,4 -quinone and an electron-rich aromatic ring, since the expected charge-transfer interaction ${ }^{3}$ between them might be helpful in stabilizing a $\mathrm{T}-\mathrm{C}$ conformation.

We report here the preparation, by oxidation, of naphthoannelated derivatives 2 and 3, and the conformation of the 1,4-naphthoquinone-annelated products 7-11.

Results and Discussion

Oxidation of Compounds 2 and 3.-Dinaphtho[2,3-a; $\left.2^{\prime}, 3^{\prime}-f\right]$ cyclodecenes 2, and the benzonaphtho analogues 3, were oxidized by $\mathrm{Na}_{2} \mathrm{CrO}_{7}$ in the usual manner ${ }^{5}$ (Scheme 2).

It is well documented that during oxidation of a naphthalene ring with dichromate, the more alkylated benzene ring is preferentially oxidized. ${ }^{6}$ the oxidation of compounds $\mathbf{2 a - c}$ afforded bis-(1,4-quinone)s, $\mathbf{7 a - c}$, and monoquinones, $\mathbf{8 a - c}$, in low yield. In addition, bis-(1,4-quinone)s, 9a-c, were produced in comparable yield to that of isomers 7a-c. Similarly, substrates 3a-c gave the expected monoquinones, 10a-c, and the anomalous oxidation products, 11a-c. Though the innermost and dialkylated benzene ring seems more prone to oxidation than does the outside ring, the oxidizing agent avoided the sterically crowded environment of the inside ring and attacked the outside ring, giving products 9 and 11.

The layered ortho-naphthaleno[3.3] ortho-1,4-naphthoquinonophane 13 was prepared by the oxidation of ortho[3.3] naphthalenophane 12 , in 8% yield, accompanied by formation of compounds $\mathbf{2 b}$ and $\mathbf{8 b}$ in 10 and 4% yield, respectively (Scheme 3).

Characterization of Conformers by ${ }^{1} \mathrm{H}$ NMR Spectroscopy.Naphthoquinones 7-11 are flexible and exhibit temperaturedependent spectra due to the stereodynamic equilibrium among $(\mathrm{C}-\mathrm{B}),(\mathrm{T}-\mathrm{C})$ and (B-C) conformations (Scheme 1). The

Scheme 2 Reagent: $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$

Scheme 3 Reagents: $\mathrm{CrO}_{3}, \mathrm{AcOH}$

Table 1 Observed ${ }^{1} \mathrm{H}$ NMR data of aromatic proton signals ${ }^{a}$ of (T-C) conformer in compounds 8,9 and 10

Compound	δ
$8 a^{\text {b }}$	6.95-7.05 (2 H), 7.20 (2 H, s)
$8 \mathrm{~b}^{\text {c }}$	6.94-7.07 (2 H), $7.24(2 \mathrm{H}, \mathrm{s})$
$8 \mathrm{c}^{\text {d }}$	$\begin{aligned} & 6.80-6.98(2 \mathrm{H}, 7.04(2 \mathrm{H}, \mathrm{~s}), 7.10-7.29(4 \mathrm{H}), 7.29-7.52 \\ & (2 \mathrm{H}) \end{aligned}$
$9 a^{\text {b }}$	$6.58(2 \mathrm{H}, \mathrm{s}), 7.47(2 \mathrm{H}, \mathrm{s})$
$9 b^{\text {c }}$	6.56 ($2 \mathrm{H}, \mathrm{s}$), 7.46 ($2 \mathrm{H}, \mathrm{s}$)
$9 \mathrm{c}^{e}$	6.45 ($2 \mathrm{H}, \mathrm{s}$), $7.22(2 \mathrm{H}, \mathrm{s})$, 7.43-7.57 (2 H, 7.57-7.71 (2 H)
$10 a^{\text {b }}$	$\begin{aligned} & 6.42-6.57(2 \mathrm{H}), \quad 6.73-6.89(2 \mathrm{H}), \quad 7.50-7.60 \quad(2 \mathrm{H}), \\ & 7.84-7.91(2 \mathrm{H}) \end{aligned}$
$10 b^{\text {c }}$	$\begin{aligned} & 6.34-6.53(2 \mathrm{H}), \quad 6.72-6.90(2 \mathrm{H}), \quad 7.66-7.84 \quad(2 \mathrm{H}), \\ & 7.84-7.99(2 \mathrm{H}) \end{aligned}$
$10 c^{5}$	6.15-6.44 (2 H), 6.54-6.79 (2 H)

[^0]resolved ${ }^{1} \mathrm{H}$ NMR spectra of compounds $7 \mathrm{a}, 8,9,10$ and 11 were obtained at temperatures from -60 to $-100^{\circ} \mathrm{C}$.

As represented by layered compound 13 , the upfield shift of the aromatic and quinone signals in the ${ }^{1} \mathrm{H}$ NMR spectrum is a characteristic feature of the $\mathrm{T}-\mathrm{C}$ conformation. ${ }^{7-11}$ Thus conformation ($\mathrm{T}-\mathrm{C}$) is easily distinguishable from ($\mathrm{B}-\mathrm{C}$) and (C-B) (Table 1).

Characterization of conformations ($\mathrm{B}-\mathrm{C}$) and ($\mathrm{C}-\mathrm{B}$) was also
carried out using ${ }^{1} \mathrm{H}$ NMR spectroscopy. The δ-values of the benzylic protons of the major conformer of compounds 8a, 10a, and 11a are tabulated together with those of the $(B-C)$ and $(C-$ B) conformers of 9a and the equivalent (B-C) and (C-B) conformers of the symmetric compounds $2 \mathbf{a}$ and $7 \mathbf{a}$ in Table 2. The following deductions were made; (1) owing to the shielding effect of the 1,4-naphthoquinone or naphthalene ring fused on the chair-shaped ring, the benzylic protons of the boat ring appear at higher field than those on the chair ring, ${ }^{2}$ and (2) the carbonyl groups of the 1,4 -naphthoquinone deshield the equatorial protons in $(\mathrm{B}-\mathrm{C})$ and $(\mathrm{C}-\mathrm{B})$ conformations, resulting in the 1.1 and 1.6 ppm differences in the δ-values between axial and equatorial protons in the bis(naphthoquinone) 7a. The differences in δ-values for the dinaphtho derivative 2a are 0.1 and 0.5 ppm .

From these findings, of the four doublets of the benzylic protons of the major conformer of compound $\mathbf{8 a}$, those at $\delta 2.31$ and 3.37 were assigned to the benzylic protons of the quinoneannelated ring, while the other set of doublets ($\delta 3.46$ and 3.53) was due to those of the naphthalene-fused cycloheptenone. Thus, the major conformer of compound 8a takes the B-C form, a composite of the quinone-fused boat and the naphthalenefused chair. The preferred conformer of compound $10 a$ is similarly believed to take the $\mathrm{B}-\mathrm{C}$ conformation.

In the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 9 a , fifteen of the sixteen peaks of eight doublets due to ($B-C$) and ($C-B$) conformations were separately observed (Fig. 1). Each of the peaks was characterized on the basis of coupling constants and relative intensities of peaks, and confirmed by a decoupling

Table 2 Observed ${ }^{1} \mathrm{H}$ NMR data of benzylic protons of (B-C) and (C-B) conformers of compounds 2a, 7a, 8a, 9a, 10a and 11a

Quinone	δ				Quotient major/minor conformers
	Major conformer		Minor conformer		
	Boat	Chair	Chair	Boat	
$2 a^{a}$		$(3.33,3.80)$			
	$(J \text { 14.5 })$	$(J \text { 15.4 })$			
$7 \mathrm{a}^{\text {b }}$	($2.58,3.70$)	(2.77, 4.3.5)			
	(${ }^{(14.6)}$	(${ }^{(15.6 \text {) }}$)			
$8 a^{\text {b }}$	$\begin{aligned} & (2.31,3.37) \\ & (J 14.6) \end{aligned}$	$\begin{aligned} & (3.46,3.53) \\ & (J 15.6) \end{aligned}$			84/6
$9 a^{\text {b }}$	($2.37,3.55$)	($3.47,3.67$)	$(3.07,4.15)$	(3.07, 3.33)	56/37
	((14.8)	(J 15.3)	($J 15.3$)	(J 13.9)	
$10 a^{\text {b }}$	$(2.44,3.43)$ $(J \text { 14.7) }$	$(3.26-3.55)^{\text {c }}$			92/4
$11 a^{b}$	$\begin{aligned} & (2.94,3.07) \\ & (J 14.5) \end{aligned}$	$\begin{aligned} & (3.24,3.65) \\ & (J 15.2) \end{aligned}$			92/8

${ }^{a}$ In CDCl_{3} at $-20{ }^{\circ} \mathrm{C} .{ }^{b}$ In CDCl_{3} at $-60{ }^{\circ} \mathrm{C}$. ${ }^{c}$ Observed as a multiplet.

Table $3{ }^{1} \mathrm{H}$ NMR data of aromatic proton signals in compounds $\mathbf{2 a}$ and $7 \mathbf{a}$

	δ	
Compound	Boat	Chair
$\mathbf{2 a}^{a}$	$7.34-7.43(2 \mathrm{H}, \mathrm{m})$	$7.48-7.57(2 \mathrm{H}, \mathrm{m})$
	$7.67(2 \mathrm{H}, \mathrm{s})$	$7.80(2 \mathrm{H}, \mathrm{s})$
	$7.67-7.77(2 \mathrm{H}, \mathrm{m})$	$7.81-7.90(2 \mathrm{H}, \mathrm{m})$
$\mathbf{7 a}^{b}$	$7.73-7.83(2 \mathrm{H}, \mathrm{m})$	$7.83-7.94(2 \mathrm{H}, \mathrm{m})$
	$8.06-8.16(2 \mathrm{H}, \mathrm{m})$	$8.16-8.17(2 \mathrm{H}, \mathrm{m})$

${ }^{a}$ In CDCl_{3} at $-20^{\circ} \mathrm{C} .{ }^{b}{ }^{\text {In }} \mathrm{CDCl}_{3}$ at $-60{ }^{\circ} \mathrm{C}$.

Fig- $1{ }^{1} \mathrm{H}$ NMR spectrum of benzylic protons of compound 9 a (at $-60^{\circ} \mathrm{C}$ in CDCl_{3})
experiment. Reasoning that the outer 1,4-quinone moiety in compounds 9 a influences the δ-values of the benzylic signals less than does the inner quinone, we assigned the major conformer of compound 9 a as $(\mathrm{B}-\mathrm{C})$ and the minor as $(\mathrm{C}-\mathrm{B})$.

In Tables 3 and 4, ${ }^{1} \mathrm{H}$ NMR data for the aromatic protons of compounds $2 \mathbf{a}$ and $7 \mathbf{a}-11 \mathbf{1}$ are summarized. A characteristic feature observed in the spectra of compounds $8 \mathbf{8 a}$ and $\mathbf{1 0 a}$ is the $c a .0 .2 \mathrm{ppm}$ upfield shift of protons at the peri-position of the 1,4 naphthoquinone moiety in conformer ($\mathrm{B}-\mathrm{C}$), compared with those in conformer ($\mathrm{C}-\mathrm{B}$). In the ${ }^{1} \mathrm{H}$ NMR spectrum of bisquinone $9 \mathbf{9}$, the upfield shift of the two kinds of peri-proton in
conformer (B-C) was also observed; the proton of the outer quinone appeared as two singlets at $\delta 8.01$ and 8.08 , each assignable to $(C-B)$ and ($B-C$) conformers, respectively, while the protons of the inner quinone gave two multiplets, at $\delta 8.11$ and 8.25 for (B-C) and (C-B) conformers (Fig. 2). Characterization of conformers ($B-C$) and ($C-B$) of compounds $\mathbf{8 b}, \mathbf{9 b}, \mathbf{1 0 b}$, 11a, 11b and 11c were similarly carried out on the basis of the upfield-shifted peri-proton signals of conformers (B-C) (Table 4) in the ${ }^{1} \mathrm{H}$ NMR spectra. The reason for the upfield shift is not known.

Bisquinones 7b and 7c did not afford well resolved spectra even at $-100^{\circ} \mathrm{C}$. We were unable to differentiate the conformers ($\mathrm{B}-\mathrm{C}$) and (C-B) of compounds $8 \mathrm{c}, 9 \mathrm{c}$, and $\mathbf{1 0 c}$ on the basis of their broadened ${ }^{1} \mathrm{H}$ NMR spectra.

Factors Controlling the Conformations of compounds 7-11.The ratios of the three conformers of the 1,4 -naphthoquinoneannelated compounds $7-11$ are given in Table 5.
In the bisquinones 7 , the ($\mathrm{T}-\mathrm{C}$) conformer was expected to be favoured because of the reduced repulsive interaction between two electron-deficient 1,4-naphthoquinone moieties, but it was not detected in the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 7 a . Electronic repulsion among the four quinone-carbonyl groups in close proximity is unfavourable in compounds 7.

In the naphtho-1,4-naphthoquinone compound $\mathbf{8 a}$, the ($\mathrm{T}-$ C) conformer was detected as only a minor fraction. Removal of the ester function on the bridgehead position made the $\mathrm{T}-\mathrm{C}$ conformation more favoured, and in compound $\mathbf{8 b}$ the relative content of conformer ($\mathrm{T}-\mathrm{C}$) is significantly increased to 54%. Reduction of the bridging sp^{2}-carbon of the carbonyl group of compound 8 b to sp^{3} further benefited the ($\mathrm{T}-\mathrm{C}$) conformer, which increased to 82% of compound 8 c . The ($\mathrm{T}-\mathrm{C}$) conformer of the ester derivative 9 a exists as 7% of the compound, which increased, on removal of the two ester groups, to 56% in compound 9 b (${ }^{1} \mathrm{H}$ NMR) (Fig. 2). With the following reduction of the bridging carbonyl function to methylene, 91% of compound 9 c was in the ($\mathrm{T}-\mathrm{C}$) conformation. The ($\mathrm{T}-\mathrm{C}$) fraction of benzo-naphthoquinone compounds 10 also increased from 4% in compound 10 a to 25% in compound $\mathbf{1 0 b}$, and to 70% in compound $10 c$. On the other hand, conformer (T-C) was not detected in compounds 11a-c.

From these results we deduced that in 1,4-naphthoquinoneannelated compounds, $\mathbf{8 a - c}, \mathbf{9 a - c}$, and 10a-c, the ester group on the bridgehead position plays a crucial role, though reduced repulsion of the two fused rings and charge-transfer attractive interactions are also important. The effect of the ester substituent seems to suggest the presence of the steric repulsion

Table 4 Observed ${ }^{1} H$ NMR data of aromatic proton signals ${ }^{a}$ of ($\mathrm{B}-\mathrm{C}$) and (C-B) conformers in compounds 8. 9, 10 and 11

	δ			
Compound	(B-C)		(C-B)	
$8 a^{\text {b }}$	7.47-7.60 (2 H)	7.66-7.77 (2 H)		
	7.80 ($2 \mathrm{H}, \mathrm{s}$)	7.82-7.92 (2 H)		
	$8.00-8.11(2 \mathrm{H})$		$8.22-8.30$ (2 H)	
$8 \mathrm{~b}^{\text {c }}$	7.46-7.52 (2 H)	7.68-7.79 (2 H)	7.37-7.45 (2 H)	
	7.84 ($2 \mathrm{H}, \mathrm{s}$)	7.85-7.94 (2 H)		
	7.98-8.10 (2 H)		8.18-8.26 (2 H)	
$9 a^{\text {b }}$	7.10 ($2 \mathrm{H}, \mathrm{s}$)	7.72-7.85 (2 H)	7.00 ($2 \mathrm{H}, \mathrm{s}$)	7.85-7.96 (2 H)
	8.04-8.19 (2 H)	8.08 ($2 \mathrm{H}, \mathrm{s}$)	$8.01(2 \mathrm{H}, \mathrm{s})$	8.19-8.30 (2 H)
$9 b^{\text {c }}$	$7.08(2 \mathrm{H}, \mathrm{s})$	7.73-7.83 (2 H)	7.00 ($2 \mathrm{H}, \mathrm{s}$)	7.85-7.93 (2 H)
	$8.00-8.12$ (2 H)		8.15-8.25 (2 H)	
$10 a^{\text {b }}$	7.29-7.49 (4 H)	7.74-7.84 (2 H)	7.09-7.22 (4 H)	7.84-7.91 (2 H)
	$8.01-8.17$ (2 H)		$8.17-8.26$ (2 H)	
$10 b^{\text {c }}$	$7.26-7.48$ (4 H)	7.66-7.84 (2 H)	7.08-7.23 (4 H)	7.84-7.99 (2 H)
	7.99-8.13 (2 H)		$8.13-8.27$ (2 H)	
$11 a^{\text {b }}$	$6.99(2 \mathrm{H}, \mathrm{s})$	7.43 (4 H, s)	$7.08(2 \mathrm{H}, \mathrm{s})$	
	7.98 ($2 \mathrm{H}, \mathrm{s}$)		8.04 ($2 \mathrm{H}, \mathrm{s}$)	
$11{ }^{\text {b }}$	6.97 ($2 \mathrm{H}, \mathrm{s}$)	7.34 (4 H, s)	$7.08(2 \mathrm{H}, \mathrm{s})$	7.13 (4 H, s)
	7.98 ($2 \mathrm{H}, \mathrm{s}$)		8.04 ($2 \mathrm{H}, \mathrm{s}$)	
$11 c^{d}$	$6.86(2 \mathrm{H}, \mathrm{s})$	7.08-7.26 (4 H)	$6.91(2 \mathrm{H}, \mathrm{s})$	6.90-7.09 (4 H)
	7.63 (2 H, s)		7.81 (2 H, s)	

${ }^{a}$ Observed as a multiplet unless otherwise stated. ${ }^{b}$ In CDCl_{3} at $-60{ }^{\circ} \mathrm{C}$. ${ }^{c}$ In a $1: 2$ mixture of CDCl_{3} and $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $-80{ }^{\circ} \mathrm{C}$. ${ }^{d}$ In a $1: 2$ mixture CS_{2} and CDCl_{3} at $-80^{\circ} \mathrm{C}$.

Fig. $2{ }^{1} \mathrm{H}$ NMR spectra of aromatic protons of compounds 9 a (at $60^{\circ} \mathrm{C}$ in CDCl_{3}) and $9 \mathrm{~b}\left(\right.$ at $-80^{\circ} \mathrm{C}$ in a mixture of CDCl_{3} and $\mathrm{CD}_{2} \mathrm{Cl}_{2}$)
between the benzylic hydrogen and the ester group on the bridgehead position in conformer (T-C) of compounds 8a, 9a and 10a. Previously, the similar but very slight increase in the (T-C) fraction was observed in the benzoquinoxalino derivative 5 : ${ }^{1}$ from 6 to 8% with removal of the ester group. Therefore, the drastic increase in the (T-C) fraction in compounds 8,9 and 10 cannot be reasoned only in terms of steric factors, though they might be one of the major reasons for the increase. Electronic repulsion between the carbonyl groups of the 1,4 -quinone moiety and the ester groups on the bridgehead position might be more important than steric crowding.

Compounds 8, 9 and 10 showed a similar increase in conformer ($\mathrm{T}-\mathrm{C}$) with removal of the ester group followed by reduction of the carbonyl group, thus the attractive chargetransfer interaction was considered to have a secondary effect for stabilizing the (T-C) conformer. As previously mentioned,

Table 5 Quotients of conformers (T-C)/[(B-C)+(C-B)] in compounds 7a and 8-11

Compound	Quotient	Compound	Quotient
$7 \mathrm{a}^{\text {a }}$	0/100	$10 a^{a}$	$4 /(4+92)$
$8 \mathbf{a}^{\text {a }}$	$10 / /(4+86)$	$10 b^{\text {c }}$	25/(14+61)
$8 a^{\text {b }}$	$11 /(5+84)$	10c ${ }^{5}$	70/(30)
$8 \mathrm{~b}^{\text {c }}$	$54 /(11+35)$	$10 c^{c}$	70/(30)
$8 c^{\text {d }}$	82/(18)	$10 c^{g}$	73/(27)
99^{a}	$7 /(37+56)$	$11 a^{a}$	$0 /(8+92)$
$9 \mathrm{~b}^{\text {c }}$	$56 /(16+28)$	$11{ }^{\text {a }}$	$0 /(25+75)$
$9 \mathrm{c}^{\text {e }}$	91/(9)	$11 c^{9}$	$0 /(25+75)$

${ }^{a}$ In CDCl_{3} at $-60{ }^{\circ} \mathrm{C} .{ }^{b}$ In a 1:2 mixture of CDCl_{3} and $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $60{ }^{\circ} \mathrm{C}$. ${ }^{\text {c }}$ In a $1: 2$ mixture of CDCl_{3} and $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $-80^{\circ} \mathrm{C}$. ${ }^{d}$ In a $1: 2$ mixture of CS_{2} and $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $-80^{\circ} \mathrm{C}$. ${ }^{e}$ In a $1: 2$ mixture of CS_{2} and $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $-100{ }^{\circ} \mathrm{C}$. ${ }^{5}$ In $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $-80{ }^{\circ} \mathrm{C}$. ${ }^{g}$ In a $1: 2$ mixture of $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ and CS_{2} at $-80^{\circ} \mathrm{C}$.
reduction of the repulsive $\pi-\pi$ interaction of the two facing rings by the fused 1,4 -quinone moiety might be helpful in stabilizing the ($\mathrm{T}-\mathrm{C}$) conformation in compounds 8,9 and 10 . Reduction of the bridging carbonyl sp^{2}-carbon to a methylene (sp^{3}) makes the methanocyclodecadiene system more flexible, resulting in amplification of the previously mentioned reduced repulsion.

The absence of detectable amounts of conformer ($\mathrm{T}-\mathrm{C}$) in compounds 11 might be explained by the lack of any reduction in such a $\pi-\pi$ repulsion.

In ester-substituted polycycles 8a, 10, and 11a, the corresponding ($\mathrm{B}-\mathrm{C}$) conformer exists as a predominant conformer over ($\mathbf{C}-\mathrm{B}$). Upon removal of the ester groups, the fraction of conformer ($\mathbf{C}-\mathbf{B}$) increased, but was still smaller than that of (BC). The reduction of the bridging carbonyl group of compound 11b caused only a small change in the composition of product 11c. On the other hand, the relative ratio is $c a .1: 1$ in compounds $9 \mathbf{a}$ and 9 b . Thus, the electron-poor 1,4-naphthoquinoneannelated cycloheptene ring favours a boat conformation and the electron-rich aromatic-annelated system favours a chair in compounds 8,10 and 11. This tendency was amplified by the presence of the electron-withdrawing ester groups on the bridgehead position in the cases of compounds 8a, 10a and 11a.

Fig- 3 Electronic spectra of compounds 8 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and compound 13 in CHCl_{3}

Fig. 4 Electronic spectra of compounds 10 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

Table 6 Content of (T-C) conformers of compound $\mathbf{8}$ determined by ${ }^{1} \mathrm{H}$ NMR and electronic spectroscopy

	Content of (T-C) $(\%)$	
Compound	${ }^{1}$ H NMR	Electronic spectra ${ }^{a}(\varepsilon$ at 400 nm$)$
$\mathbf{8 b}$	54	$65(1350)$
$\mathbf{8 c}$	82	$89(1850)$

${ }^{a}$ The ε-value at 400 nm of compound $\mathbf{1 3}$ with layered structure is 2090.

Electronic Spectra.-Bisquinones 7a-c showed electronic spectra similar to that of 2,3-dimethyl-1,4-naphthoquinone 14. As expected, the spectra of compounds 8 and 13 (Fig. 3) clearly showed an absorption band due to a charge-transfer interaction between the naphthalene ring and the 1,4-naphthoquinone ring as a broad band at $\lambda \sim 400 \mathrm{~nm}$. Since the absorption coefficient of compound $8 \mathbf{a}$ is independent of the concentration change in the range of $10^{-3}-10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$, the band at $\lambda \sim 400 \mathrm{~nm}$ originates from an intramolecular interaction. Interestingly, the

Fig. 5 Electronic spectra of compounds 9 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and compound 14 in CHCl_{3}

7a; $\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{X}=\mathrm{CO}$
b; $\mathrm{R}=\mathrm{H}, \mathrm{X}=\mathrm{CO}$
c; $R=H, X=\mathrm{CH}_{2}$

15

Scheme 4 Conditions: i , $h \mathrm{v}$; ii, heat
relative amounts of conformer (T-C) determined by ${ }^{1} \mathrm{H}$ NMR spectra and those calculated on the absorption coefficient of compounds $\mathbf{8 b}, 8 \mathrm{c}$ and 13 are in fairly good agreement (Table 6). A similar but weak $\mathrm{C}-\mathrm{T}$ band was observed in compounds $\mathbf{1 0}$ (Fig. 4).

The spectra of compounds 9 broadened with increasing (T C) fraction (Fig. 5), indicating through-space $\pi-\pi$ interaction between two 1,4 -naphthoquinone rings of the ($\mathrm{T}-\mathrm{C}$) confrontation.

Finally, in the (T-C) conformation of compounds 7, although undetected, the two 1,4 -naphthoquinone moieties may come into close proximity. Under irradiation by sunlight, compounds 7 gave the intramolecular [2 + 2] cycloadducts, 15 (Scheme 4). In sunlight, conversion of diester 7a into compound 15a took 9 h , while compounds $\mathbf{1 5 b}$-c was obtained quantitatively from substrate $\mathbf{7 b - c}$ in 1 h . Thermal retro-addition of compound 15a at $270^{\circ} \mathrm{C}$ for 1 h gave compound 7 a in 60% yield.

Experimental

M.p.s were determined on a Yanagimoto micro melting point apparatus and are uncorrected. IR spectra were recorded on an IR A-102 spectrophotometer as KBr pellets. ${ }^{1} \mathrm{H}$ NMR (internal $\mathrm{Me}_{4} \mathrm{Si}$) spectra given in this section were taken in CDCl_{3} at $25^{\circ} \mathrm{C}$ on a JEOL GSX-270 NMR spectrometer unless stated otherwise. J-Values are given in Hz . Mass spectra were recorded on a JEOL JMS-01SG-2 mass spectrometer at 75 eV using a direct-inlet system. Column chromatography was carried out on silica gel (MERCK, Kiesel gel 60). Electronic spectra were recorded on a Hitachi 220A spectrophotometer.

6,7,8,15,16,17-Hexahydro-7,16-methanodinaphtho [2,3-a $: 2^{\prime}$, $3-f]$ cyclodecene ($\mathbf{2 c}$).-After a mixture of $\mathrm{TiCl}_{3}(11.5 \mathrm{~g})$ and $\mathrm{LiAlH}_{4}(0.81 \mathrm{~g})$ in dry tetrahydrofuran (THF) ($200 \mathrm{~cm}^{3}$) had been refluxed under nitrogen for 1 h , a solution of ketone $\mathbf{2 b}$ $(2.50 \mathrm{~g})$ in dry THF ($120 \mathrm{~cm}^{3}$) was added dropwise. The whole mixture was refluxed for 15.5 h and then cooled to room temperature. Aq. $20 \% \mathrm{~K}_{2} \mathrm{CO}_{3}\left(240 \mathrm{~cm}^{3}\right)$ was added and insoluble materials were filtered off. The filtrate was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the extract was washed with water, dried over MgSO_{4}, and evaporated under reduced pressure to leave a residue which, on chromatography with CHCl_{3} as eluent, gave compound $2 \mathrm{c}(1.63 \mathrm{~g}, 68 \%)$. Recrystallization from a $1: 1$ mixture of benzene and hexane gave the title compound 2 c as plates, m.p. $260.5-262^{\circ} \mathrm{C} ; v / \mathrm{cm}^{-1} 2922$ and $749 ; \delta_{\mathrm{H}}\left[\mathrm{CD}_{2} \mathrm{Cl}_{2}-\right.$ $\left.\mathrm{CS}_{2}(1: 2)\right] 1.67(2 \mathrm{H}, \mathrm{s}), 2.17-3.72(10 \mathrm{H}, \mathrm{m})$ and $7.06-8.00(12 \mathrm{H}$, m); $m / z 348\left(\mathrm{M}^{+}\right)$(Found: C, 93.3; H, 7.0. $\mathrm{C}_{27} \mathrm{H}_{24}$ requires C , 93.06; H, 6.94\%).

5,6,7,14,15,16-Hexahydro-6,15-methanobenzo[a]naphtho-[2,3-f]cyclodecene 3c.-A mixture of $\mathrm{TiCl}_{3}(3.61 \mathrm{~g})$ and LiAlH_{4} (0.45 g) in dry THF ($150 \mathrm{~cm}^{3}$) was refluxed for 1 h and to this mixture was added dropwise a solution of compound $\mathbf{3 b}(1.38 \mathrm{~g})$ in dry THF ($20 \mathrm{~cm}^{3}$). The reaction mixture was treated and worked up as described in the preparation of compound 2 c , and gave a residue which, on recrystallization from ethanol, afforded title compound 3 c as a crystalline powder $(0.60 \mathrm{~g}, 46 \%)$, m.p. 134$137{ }^{\circ} \mathrm{C} ; v_{\text {max }} / \mathrm{cm}^{-1} 2920$ and $753 ; \delta_{\mathrm{H}}\left[\mathrm{CD}_{2} \mathrm{Cl}_{2}-\mathrm{CS}_{2}(1: 2)\right] 1.64$ (2 $\mathrm{H}, \mathrm{s}), 1.95-4.03(10 \mathrm{H}, \mathrm{m})$ and $6.61-7.82(10 \mathrm{H}, \mathrm{m}) ; m / z 298\left(\mathrm{M}^{+}\right)$ (Found: C, 92.9; H, 7.4. $\mathrm{C}_{23} \mathrm{H}_{22}$ requires C, 92.57; H, 7.43\%).

Dimethyl 5,9,14,18,19-Pentaoxo-5,6,7,8,9,14,15,16,17,18-deca-hydro-7,16-methanodinaphtho[2,3-a:2',3'-f]cyclodecene-7,16dicarboxylate 7a, Dimethyl 5,18,19-Trioxo-5,6,7,8,15,16,17,18-octahydro-7,16-methanodinaphtho[2,3-a:2', 3^{\prime}-f]cyclodecene-7,16-dicarboxylate 8a, and Dimethyl 1,4,9,14,19-Pentaoxo-1,4,6,7,8,9,14,15,16,17-decahydro-7,16-methanodinaphtho[2,3$\mathrm{a}: 2^{\prime} 3^{\prime}$-f] cyclodecene-7,16-dicarboxylate $9 \mathbf{9}$.-To a vigorously stirred mixture of compound $\mathbf{2 a}(4.00 \mathrm{~g})$ in $\mathrm{CHCl}_{3}\left(38 \mathrm{~cm}^{3}\right)$ and $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}(24.4 \mathrm{~g})$ in water $\left(8 \mathrm{~cm}^{3}\right)$ was added dropwise conc. $\mathrm{H}_{2} \mathrm{SO}_{4}\left(19.2 \mathrm{~cm}^{3}\right)$ without external cooling at such a rate as to cause reflux of the reaction mixture. After the addition was complete, the mixture was stirred under reflux for 30 min . before being cooled to room temperature and poured into ice-water $\left(200 \mathrm{~cm}^{3}\right)$. The organic layer was separated, washed with water, dried over $\mathrm{Mg}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave a residue which, on column chromatography with CHCl_{3} as eluant, afforded compounds $7 \mathbf{a}(0.30 \mathrm{~g}, 7 \%)$, $\mathbf{8 a}(0.33 \mathrm{~g}, 8 \%)$, and $9 \mathbf{a}(0.31 \mathrm{~g}, 7 \%)$. Recrystallization of compound $7 \mathbf{a}$ from MeCN gave yellow prisms, m.p. $287-292{ }^{\circ} \mathrm{C} ; v_{\text {max }} / \mathrm{cm}^{-1} 1745$, 1696,1665 and $1594 ; \delta_{\mathrm{H}} 3.05-4.00(8 \mathrm{H}, \mathrm{m}), 3.67(6 \mathrm{H}, \mathrm{s}), 7.72-$ $7.90(4 \mathrm{H}, \mathrm{m})$ and $8.07-8.28(4 \mathrm{H}, \mathrm{m}) ; m / z 538\left(\mathrm{M}^{+}\right)$(Found: C, $69.3 ; \mathrm{H}, 4.3 . \mathrm{C}_{31} \mathrm{H}_{22} \mathrm{O}_{9}$ requires $\mathrm{C}, 69.14 ; \mathrm{H}, 4.12 \%$).

Compound 8a was purified by recrystallization from MeCN , giving yellow prisms, m.p. $291-295^{\circ} \mathrm{C} ; v_{\max } / \mathrm{cm}^{-1} 1745,1696$, 1659 and $1595 ; m / z 508\left(\mathrm{M}^{+}\right)$(Found: C, $73.0 ; \mathrm{H}, 4.9 . \mathrm{C}_{31} \mathrm{H}_{24} \mathrm{O}_{7}$ requires $\mathrm{C}, 73.27 ; \mathrm{H}, 4.72 \%$).

Compound 9a was obtained as a yellow; crystalline powder, m.p. $313-317{ }^{\circ} \mathrm{C}$ (from AcOH); $r_{\text {max }} / \mathrm{cm}^{-1} 1745,1696,1671$ and $1600 ; \delta_{\mathrm{H}} 2.39-4.08(8 \mathrm{H}, \mathrm{m}), 3.75(6 \mathrm{H}, \mathrm{s}), 6.88(2 \mathrm{H}, \mathrm{s}), 7.48-7.77$ $(2 \mathrm{H}, \mathrm{m}), 7.91(2 \mathrm{H}, \mathrm{s})$ and $7.98-8.24(2 \mathrm{H}, \mathrm{m}) ; m / z 538\left(\mathrm{M}^{+}\right)$ (Found: $\mathrm{C}, 68.7 ; \mathrm{H}, 4.2 . \mathrm{C}_{31} \mathrm{H}_{22} \mathrm{O}_{9}$ requires $\mathrm{C}, 69.14 ; \mathrm{H}$, 4.12%).

5,9,14,18,19-Pentao.xo-5,6,7,8,9,14,15,16,17,18-decahydro-7,16-methanodinaphtho[2,3-a:2'3'-f]cyclodecene 7b, 5,18,19-Trioxo-5,6,7,8,15,16,17,18-octahydro-7,16-methanodinaphtho-[2,3-a:2'3'-f]cyclodecene 8b, and 1,4,9,14,19-Pentaoxo- 1,4,6,7,-8,9,14,15,16,17-decahydro-7,16-methanodinaphtho[2,3-a:2', $3^{\prime}-$
f]cyclodecene $9 \mathbf{b}$.-Compound $\mathbf{2 b}(1.50 \mathrm{~g})$ in $\mathrm{CHCl}_{3}(24$ cm^{3}) was oxidized by a mixture of $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}(12.1 \mathrm{~g})$ in water (3 cm^{3}) and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}\left(6.3 \mathrm{~cm}^{3}\right)$, and worked up as described in the oxidation of compound $2 \mathbf{a}$, to give compounds $7 \mathrm{~b}(0.13 \mathrm{~g}$, $7 \%), \mathbf{8 b}(0.07 \mathrm{~g}, 4 \%)$, and $9 \mathrm{~b}(0.13 \mathrm{~g}, 7 \%)$ together with recovered $\mathbf{2 b}(0.03 \mathrm{~g}, 2 \%)$. Recrystallization of compound 7 b from MeCN gave yellow plates, m.p. $271-277^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1} 1691,1664$ and 1596; δ_{H} 2.83-3.04 (4 H, m), 3.11-3.35 (6 H, m), 7.60-7.78 (4 H, m) and 7.98-8.15 (4 H, m); m/z 422 (M^{+}) (Found: C, 76.6; H, 4.5. $\mathrm{C}_{27} \mathrm{H}_{18} \mathrm{O}_{5}$ requires $\mathrm{C}, 76.77 ; \mathrm{H}, 4.29 \%$).
Compound 8b was obtained as yellow plates, m.p. 291-295 ${ }^{\circ} \mathrm{C}$ (from MeCN); $v_{\text {max }} / \mathrm{cm}^{-1} 1708,1659$ and $1595 ; \delta_{\mathrm{H}}\left[\mathrm{CDCl}_{3}-\right.$ $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}(1: 2)\right] 2.36-2.67(2 \mathrm{H}, \mathrm{m}), 2.89-3.87(8 \mathrm{H}, \mathrm{m})$ and 6.93$8.22(10 \mathrm{H}, \mathrm{m}) ; \mathrm{m} / \mathrm{z} 392\left(\mathrm{M}^{+}\right)$(Found: C, 82.3; H, 5.3. $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{O}_{3}$ requires $\mathrm{C}, 82.63 ; \mathrm{H}, 5.14 \%$).

Compound 9b was obtained as a yellow, crystalline powder, m.p. $299-305^{\circ} \mathrm{C}$ (from MeCN); $v_{\text {max }} / \mathrm{cm}^{-1} 1701,1667$ and 1603 ; $\delta_{\mathrm{H}} 2.54-2.75(2 \mathrm{H}, \mathrm{m}), 3.08-3.92(8 \mathrm{H}, \mathrm{m}), 6.68(2 \mathrm{H}, \mathrm{s}), 7.54-7.74$ $(2 \mathrm{H}, \mathrm{m})$, $7.64(2 \mathrm{H}, \mathrm{s})$ and $7.86-8.14(2 \mathrm{H}, \mathrm{s}) ; m / z 422\left(\mathrm{M}^{+}\right)$ (Found: $\mathrm{C}, 76.5 ; \mathrm{H}, 4.6 . \mathrm{C}_{27} \mathrm{H}_{18} \mathrm{O}_{5}$ requires $\mathrm{C}, 76.77 ; \mathrm{H}, 4.29 \%$).

5,9,14,18-Tetraoxo-5,6,7,8,9,14,15,16,17,18-decahydro-7,16methanodinaphtho $\left[2,3-\mathrm{a}: 2^{\prime}, 3^{\prime}\right.$-f]cyclodecene 7c, 5,18-Dioxo-5,6,-7,8,15,16,17,18-octahydro-7,16-methanodinaphtho[2,3-a:2', 3^{\prime}-f)cyclodecene 8c, and 1,4,9,14-Tetraoxo-1,4,6,7,8,9,14,15,16,17-decahydro-7,16-methanodinaphtho $\left[2,3-\mathrm{a}: 2^{\prime}, 3^{\prime}-\mathrm{f}\right]$ cyclodecene 9c.-Compound $2 \mathbf{c}(1.50 \mathrm{~g})$ in $\mathrm{CHCl}_{3}\left(30 \mathrm{~cm}^{3}\right)$ was oxidized with a mixture of $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}(12.6 \mathrm{~g})$ in water ($5 \mathrm{~cm}^{3}$) and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}\left(9.9 \mathrm{~cm}^{3}\right)$, and worked up as described in the oxidation of compound $2 \mathbf{2 a}$ to afford a residue which, on column chromatography with CHCl_{3} as eluent, gave compounds 7c $(0.22 \mathrm{~g}, 13 \%)$, 8c $(0.11 \mathrm{~g}, 7 \%)$, and $9 \mathrm{c}(0.11 \mathrm{~g}, 6 \%)$. Recrystallization of compound $7 \mathbf{c}$ from benzene gave yellow prisms, m.p. $287-292^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1} 2892,1659$ and $1592 ; \delta_{\mathrm{H}}$ $\left[\mathrm{CD}_{2} \mathrm{Cl}_{2}-\mathrm{CS}_{2}(2: 1)\right] 2.04-2.16(2 \mathrm{H}, \mathrm{m}), 2.33-2.49(2 \mathrm{H}, \mathrm{m})$, 2.78-2.89 (4 H, m), 3.10-3.27 (4 H, m), 7.49-7.66 (4 H, m) and 7.82-7.95 ($4 \mathrm{H}, \mathrm{m}$); m/z $408\left(\mathrm{M}^{+}\right)$(Found: C, 79.1; H, 5.2. $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{O}_{4}$ requires $\mathrm{C}, 79.40 ; \mathrm{H}, 4.94 \%$).

Compound 8c was obtained as yellow prisms m.p. 264 $265^{\circ} \mathrm{C}$ [from benzene-hexane (1:1)]; $v_{\text {max }} / \mathrm{cm}^{-1} 2892,1652$ and 1593; $\delta_{\mathrm{H}}\left[\mathrm{CD}_{2} \mathrm{Cl}_{2}-\mathrm{CS}_{2}(2: 1)\right] 2.09-2.68(6 \mathrm{H}, \mathrm{m}), 2.74-4.02(6$ H, m) and $6.70-8.20(10 \mathrm{H}, \mathrm{m}) ; m / z 378\left(\mathrm{M}^{+}\right)$(Found: C, 85.4; H, 5.9. $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{O}_{2}$ requires $\mathrm{C}, 85.69 ; \mathrm{H}, 5.86 \%$).

Compound 9c was obtained as yellow prisms, m.p. 282$287^{\circ} \mathrm{C}$ (from berzene); $v_{\text {max }} / \mathrm{cm}^{-1}$ 2890, 1665 and $1593 ; \delta_{\mathrm{H}}$ $\left[\mathrm{CD}_{2} \mathrm{Cl}_{2}-\mathrm{CS}_{2}(2: 1)\right] 2.23-2.66(6 \mathrm{H}, \mathrm{m}), 2.95-3.14(2 \mathrm{H}, \mathrm{m})$, 3.18-3.35 (2 H, m), 3.52-3.75 (2 H, m), 6.45 (2 H, s), 7.32 ($2 \mathrm{H}, \mathrm{s}$), 7.39-7.52 ($2 \mathrm{H}, \mathrm{m}$) and 7.59-7.83 ($2 \mathrm{H}, \mathrm{m}$); m/z $408\left(\mathrm{M}^{+}\right)$ (Found: C, $79.4 ; \mathrm{H}, 5.15 . \mathrm{C}_{27} \mathrm{H}_{20} \mathrm{O}_{4}$ requires $\mathrm{C}, 79.40 ; \mathrm{H}, 4.94 \%$).

Dimethyl 8,13,17-Trioxo-5,6,7,8,13,14,15,16-octahydro-6,15-methanobenzo[a]naphtho[2,3-f]cyclodecene-6,15-dicarboxylate 10a and Dimethyl 9,12,17-Trioxo-5,6,7,9,12,14,15,16-octahydro-6,15-methanobenzo[a]naphtho[2,3-f]cyclodecene-6,15-dicarboxylate 11a.-Compound 3a (1.29 g) in $\mathrm{CHCl}_{3}\left(14 \mathrm{~cm}^{3}\right)$ was oxidized with a mixture of $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}(4.40 \mathrm{~g})$ in water $\left(2 \mathrm{~cm}^{3}\right)$ and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}\left(3.4 \mathrm{~cm}^{3}\right)$, and worked up as described in the
oxidation of compound $\mathbf{2 a}$, to yield compounds $10 \mathbf{a}(0.41 \mathrm{~g}$, 30%) and $11 \mathrm{a}(0.12 \mathrm{~g}, 9 \%$), together with unchanged compound 3a ($0.22 \mathrm{~g}, 17 \%$ recovery). Recrystallization of compound 10a from MeCN gave yellow prisms, m.p. 274-279 ${ }^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1}$ $1748,1702,1667$ and $1593 ; \delta_{\mathrm{H}} 2.36-3.96(8 \mathrm{H}, \mathrm{m}), 3.68(6 \mathrm{H}, \mathrm{s})$, $7.24(4 \mathrm{H}, \mathrm{s}), 7.64-7.83(2 \mathrm{H}, \mathrm{m})$ and $7.99-8.14(2 \mathrm{H}, \mathrm{m}) ; m / z 458$ $\left(\mathrm{M}^{+}\right)$(Found: $\mathrm{C}, 70.94 ; \mathrm{H}, 5.06 . \mathrm{C}_{27} \mathrm{H}_{22} \mathrm{O}_{7}$ requires $\mathrm{C}, 70.74 ; \mathrm{H}$, 4.84%).

Compound 11 a was obtained as yellow needles on recrystallization from EtOH -benzene (3:1), m.p. $269-275^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1}$ $1743,1699,1670$ and $1605 ; \delta_{\mathrm{H}} 2.91$ ($2 \mathrm{H}, \mathrm{d}, J 13.6$), $3.03(2 \mathrm{H}, \mathrm{d}, J$ 13.6), 3.19 ($2 \mathrm{H}, \mathrm{d}, J 15.2$), $3.62(2 \mathrm{H}, \mathrm{d}, J 15.2), 3.75(6 \mathrm{H}, \mathrm{s}), 6.91$ $(2 \mathrm{H}, \mathrm{s}), 7.17-7.44(4 \mathrm{H}, \mathrm{m})$ and $7.95(2 \mathrm{H}, \mathrm{s}) ; m / z 458\left(\mathrm{M}^{+}\right)$ (Found: C, 70.5; H, 4.9\%).

8,13,17-Trioxo-5,6,7,8,13,14,15,16-octahydro-6,15-methano-ben=o[a]naphtho[2,3-f]cyclodecene 10b and 9,12,17-Trioxo-5,6,-7,9,12,14,15,16-octahydro-6,15-methanobenzo[a]naphtho[2,3-
f]cyclodecene $11 \mathbf{b}$.-Compound $\mathbf{3 b}(0.47 \mathrm{~g})$ in $\mathrm{CHCl}_{3}\left(7 \mathrm{~cm}^{3}\right)$ was oxidized with a mixture of $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}(2.20 \mathrm{~g})$ in water (1 cm^{3}) and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}\left(1.70 \mathrm{~cm}^{3}\right.$), and worked up as described in the oxidation of compound 2a, to give compounds $\mathbf{1 0 b}$ (0.15 $\mathrm{g}, 29 \%$) and $11 \mathrm{~b}(0.03 \mathrm{~g}, 6 \%)$ together with unchanged substrate 3b $(0.07 \mathrm{~g}, 14 \%)$. Both compounds 10 b and 11 b were recrystallized from MeCN to give yellow prisms. Compound $\mathbf{1 0 b}$ had m.p. $222-227^{\circ} \mathrm{C} ; v_{\max } / \mathrm{cm}^{-1} 1700,1664$ and $1593 ; \delta_{\mathrm{H}} 2.65$ $3.31(10 \mathrm{H}, \mathrm{m}), 6.81-6.96(2 \mathrm{H}, \mathrm{m}), 6.96-7.09(2 \mathrm{H}, \mathrm{m}), 7.56-7.82$ ($2 \mathrm{H}, \mathrm{m}$) and 7.91-8.06 ($2 \mathrm{H}, \mathrm{m}$); m/z $342\left(\mathrm{M}^{+}\right.$) (Found: C, 80.4; $\mathrm{H}, 5.3 . \mathrm{C}_{23} \mathrm{H}_{18} \mathrm{O}_{3}$ requires $\mathrm{C}, 80.68 ; \mathrm{H}, 5.30 \%$).

Compound 11b had m.p. 279-285 ${ }^{\circ} \mathrm{C}$; $v_{\max } / \mathrm{cm}^{-1} 1696,1668$ and 1603; $\delta_{\mathrm{H}} 2.65-3.03(8 \mathrm{H}, \mathrm{m}), 3.03-3.29(2 \mathrm{H}, \mathrm{m}), 6.92(2 \mathrm{H}, \mathrm{s})$, $7.24(4 \mathrm{H}, \mathrm{s})$, and $7.83(2 \mathrm{H}, \mathrm{s})$; $m / z 342\left(\mathrm{M}^{+}\right)$(Found: C, 80.6; H, 5.6%).

8,13-Dioxo-5,6,7,8,13,14,15,16-octahydro-6,15-methanobenzo-[a]naphtho[2,3-f]cyclodecene 10c and 9,12-Dioxo-5,6,7,9,12,14,-15,16-octahydro-6,15-methanobenzo[a]naphtho[2,3-f]cyclo-
decene 11c.-Compound $3 \mathrm{c}(0.45 \mathrm{~g})$ in $\mathrm{CHCl}_{3}\left(17 \mathrm{~cm}^{3}\right)$ was oxidized with a mixture of $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}(2.20 \mathrm{~g})$ in water $\left(1 \mathrm{~cm}^{3}\right)$ and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}\left(1.7 \mathrm{~cm}^{3}\right)$, and worked up as described in the oxidation of compound 2a, to give compounds $10 \mathrm{c}(0.11 \mathrm{~g}, 23 \%)$ and $11 \mathrm{c}(0.03 \mathrm{~g}, 5 \%)$ together with unchanged substrate $3 \mathrm{c}(0.03$ $\mathrm{g}, 6 \%$). Compound 10 c was recrystallized from ethanol to give yellow prisms, m.p. $155.5-158^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1} 2910,1656$ and $1592 ; \delta_{\mathrm{H}}\left[\mathrm{CD}_{2} \mathrm{Cl}_{2}-\mathrm{CS}_{2}(1: 2)\right] 2.22(2 \mathrm{H}, \mathrm{s}), 2.34-2.59(4 \mathrm{H}, \mathrm{m})$, 2.69-2.86 ($2 \mathrm{H}, \mathrm{m}$), 3.03-3.36 (4 H, m), 6.35-6.57 ($2 \mathrm{H}, \mathrm{m}$) 6.63$6.75(2 \mathrm{H}, \mathrm{m}), 7.48-7.61(2 \mathrm{H}, \mathrm{m})$ and 7.75-7.90(2 H, m); m/z 328 $\left(\mathrm{M}^{+}\right.$) (Found $\mathrm{C}, 84.4 ; \mathrm{H}, 6.3 . \mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{2}$ requires $\mathrm{C}, 84.11 ; \mathrm{H}$, 6.14%).

Compound 11c was obtained as yellow prisms, m.p. 217$219{ }^{\circ} \mathrm{C}$ (from EtOH); $v_{\max } / \mathrm{cm}^{-1} 2886,1667$ and $1600 ; \delta_{\mathrm{H}^{-}}$ [$\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}-\mathrm{CS}_{2}(1: 2)\right] 1.60-1.80(2 \mathrm{H}, \mathrm{m}), 2.19-2.45(2 \mathrm{H}, \mathrm{m})$, 2.45-3.45 ($8 \mathrm{H}, \mathrm{m}$), $6.81(2 \mathrm{H}, \mathrm{s}), 7.01(4 \mathrm{H}, \mathrm{s})$ and $7.65(2 \mathrm{H}, \mathrm{s})$; $m / z 328\left(\mathrm{M}^{+}\right)$(Found: C, 83.5; H, 6.2%).

19,19-Ethylenedioxy-5,18-dioxo-5,6,7,8,15,16,17,18-octahy-dro-7,16-methanodinaphtho $\left[2,3-\mathrm{a}: 2^{\prime}, 3^{\prime}-\mathrm{f}\right]$ cyclodecene 13.-To a vigorously stirred mixture of the acetal $12(0.50 \mathrm{~g})$ in $\mathrm{AcOH}(50$ cm^{3}) was added dropwise a mixture of $\mathrm{CrO}_{3}(0.75 \mathrm{~g})$ in $\mathrm{AcOH}(5$ cm^{3})-water $\left(5 \mathrm{~cm}^{3}\right)$ without external cooling at such a rate as to cause reflux of the reaction mixture. After the addition was complete, the reaction mixture was stirred under reflux for 15 min before being cooled to room temperature, poured into icewater ($300 \mathrm{~cm}^{3}$), and kept overnight. The precipitated solid was
collected and chromatographed with CHCl_{3} as eluent, to give compounds 2 b ($0.05 \mathrm{~g}, 10 \%$), $13(0.04 \mathrm{~g}, 8 \%$), and $\mathbf{8 b}(0.02 \mathrm{~g}, 4 \%)$. Compound 13 was recrystallized from benzene to give yellow. prisms, m.p. 331-334 ${ }^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1} 1653$ and $1592 ; \delta_{\mathrm{H}} 2.40-2.55$ $(2 \mathrm{H}, \mathrm{m}), 2.66(2 \mathrm{H}, \mathrm{m}), 2.84(2 \mathrm{H}, \mathrm{dd}, J 5.9$ and 15.0$), 3.50-3.66$ ($4 \mathrm{H}, \mathrm{m}$), $4.13(4 \mathrm{H}, \mathrm{s}), 6.85-6.96(2 \mathrm{H}, \mathrm{m}), 7.10(2 \mathrm{H}, \mathrm{s}), 7.13-7.24$ $(4 \mathrm{H}, \mathrm{m})$ and 7.47-7.55 ($2 \mathrm{H}, \mathrm{m}$); m/z $466\left(\mathrm{M}^{+}\right)$(Found: C, 79.85; $\mathrm{H}, 5.5 . \mathrm{C}_{29} \mathrm{H}_{24} \mathrm{O}_{4}$ requires $\mathrm{C}, 79.79 ; \mathrm{H}, 5.54 \%$).

Dimethyl 4,11,17,24,27-Pentaoxooctacyclo[12.12.1.0 ${ }^{3.12}$.$\left.0^{3.25} .0^{5.10} .0^{12.16} .0^{16.25} .0^{18.23}\right]$ heptacosa-5,7,9,18,20,22-
hexaene-1,14-dicarboxylate $15 \mathbf{a}$.-A solution of compound $7 \mathbf{7 a}$ (20 mg) in $\mathrm{CDCl}_{3}\left(0.6 \mathrm{~cm}^{3}\right.$) was kept in daylight for 9 h , to afford the title compound 15a quantitatively as a crystalline powder, m.p. $321-328^{\circ} \mathrm{C}$ (decomp.) (from MeCN); $v_{\max } / \mathrm{cm}^{-1} 1744,1685$ and $1592 ; \delta_{\mathrm{H}} 2.68(4 \mathrm{H}, \mathrm{d}, J 16), 3.23(4 \mathrm{H}, \mathrm{d}, J 16), 3.83(6 \mathrm{H}, \mathrm{s})$, 7.24-7.51 ($4 \mathrm{H}, \mathrm{m}$) and 7.51-7.79 ($4 \mathrm{H}, \mathrm{m}$); m/z $538\left(\mathrm{M}^{+}\right)$ (Found: C, 69.2; H, 4.2. $\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{O}_{9}$ requires $\mathrm{C}, 69.14 ; \mathrm{H}, 4.12 \%$).

4,11,17,24,27-Pentaoxooctacyclo[12.12.1.0 $0^{3.12} \cdot 0^{3.25} .0^{5.10}$.$\left.0^{12.16} .0^{16.25} .0^{18.23}\right]$ heptacosa- $5,7,9,18,20,22-h e x a e n e$ 15b.-A solution of compound $7 \mathrm{~b}(20 \mathrm{mg})$ in $\mathrm{CDCl}_{3}\left(0.6 \mathrm{~cm}^{3}\right)$ was kept in sunlight for 1 h , to give compound 15b quantitatively as pale yellow prisms, m.p. 325-327 ${ }^{\circ} \mathrm{C}$ (decomp.) (from EtOAc); $v_{\text {max }} / \mathrm{cm}^{-1} 1700,1687$ and $1589 ; \delta_{\mathrm{H}} 2.34(4 \mathrm{H}, \mathrm{d}, J$ 15.4), 2.94 ($4 \mathrm{H}, \mathrm{dd}, J 7.0$ and 15.0), 3.51 ($2 \mathrm{H}, \mathrm{t}, J 6.6$), $7.34-7.52$ ($4 \mathrm{H}, \mathrm{m}$) and 7.60-7.81 ($4 \mathrm{H}, \mathrm{m}$); m/z $422\left(\mathrm{M}^{+}\right)$(Found: C, 76.75; $\mathrm{H}, 4.4 . \mathrm{C}_{27} \mathrm{H}_{18} \mathrm{O}_{5}$ requires $\mathrm{C}, 76.77 ; \mathrm{H}, 4.29 \%$).

4,11,17,24-Tetraoxooctacyclo[12.12.1.0 $0^{3.12} \cdot 0^{3.25} \cdot 0^{5.10}$. $\left.0^{12.16} .0^{16.25} .0^{18.23}\right]$ heptacosa-5,7,9,18,20,22-hexaene $15 \mathrm{c} .-\mathrm{A}$ solution of compound $7 \mathrm{c}(5 \mathrm{mg})$ in a $1: 1$ mixture of $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ and $\mathrm{CS}_{2}\left(0.6 \mathrm{~cm}^{3}\right)$ was kept in sunlight for 1 h , to give compound 15 c quantitatively as pale yellow prisms, m.p. $298.5^{\circ} \mathrm{C}$ (decomp.) (from benzene); $v_{\text {max }} / \mathrm{cm}^{-1} 2918,1690$ and $1592 ; \delta_{\mathrm{H}}\left[\mathrm{CD}_{2} \mathrm{Cl}_{2}-\right.$ $\left.\mathrm{CS}_{2}(2: 1)\right] 1.89(2 \mathrm{H}, \mathrm{t}, J 3.7), 2.00(4 \mathrm{H}, \mathrm{d}, J 14.7), 2.27(4 \mathrm{H}, \mathrm{dd}, J$ 7.7 and 14.6), $3.05(2 \mathrm{H}, \mathrm{m}), 7.30-7.44(4 \mathrm{H}, \mathrm{m})$ and $7.55-7.80(4$ H, m); $m / z 408\left(\mathrm{M}^{+}\right)$(Found: $\mathrm{C}, 79.1 ; \mathrm{H}, 5.2 . \mathrm{C}_{27} \mathrm{H}_{20} \mathrm{O}_{4}$ requires C, $79.40 ; \mathrm{H}, 4.94 \%$).

References

1 S. Mataka, T. Mimura, S. T. Lee, H. Kobayashi, K. Takahashi, M. Tashiro, K. Imada and M. Kuniyoshi, J. Org. Chem., 1989, 54, 5237.
2 S. Mataka, K. Takahashi, T. Hirota, K. Takuma, H. Kobayashi and M. Tashiro, J. Org. Chem., 1986, 51, 4618.

3 D. J. Cram and A. C. Day, J. Org. Chem., 1966, 31, 1227.
4 H. A. Stabb, M. Joerns, C. Krieger and M. Rentzea, Chem. Ber., 1985, 118, 796.
5 R. H. Thomson, The Chemistry of the Quinonoid Compounds, ed. S. Patai, Wiley, London, 1974, Part 1, ch. 3, p. 111.
6 J. Skarzewski, Tetrahedron, 1984, 40, 4997.
7 S. Cristol and D. C. Lewis, J. Am. Chem. Soc., 1967, 89, 1476.
8 H. Prinzbach, G. Sedelweiter, C. Kruger, R. Goddard, H. D. Martin and R. Gleiter, Angew: Chem., 1978, 90, 227.
9 W. D. Fessner, G. Sedelmeier, P. R. Spurr, G. Rihs and H. Prinzbach, J. Am. Chem. Soc., 1987, 109, 4626.

10 S. Mataka, K. Takahashi, T. Hirota, K. Takuma, H. Kobayashi and M. Tashiro, J. Chem. Soc., Chem. Commun., 1985, 973.

11 S. Mataka, K. Takahashi, T. Mimura, T. Hirota, K. Takuma, H. Kobayashi, M. Tashiro, K. Imada and M. Kuniyoshi, J. Org. Chem., 1987, 52, 2653.

Paper 0/04765A
Received 23rd October 1990 Accepted 13th November 1990

[^0]: ${ }^{a}$ Observed as a multiplet unless otherwise stated. ${ }^{b}$ In CDCl_{3} at $60^{\circ} \mathrm{C}$. ${ }^{\text {c }}$ In a $1: 2$ mixture of CDCl_{3} and $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $-80^{\circ} \mathrm{C}$. ${ }^{d}$ In a $1: 2$ mixture of CS_{2} and $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $-80^{\circ} \mathrm{C}$. ${ }^{e}$ In a $1: 2$ mixture of CS_{2} and $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $-100^{\circ} \mathrm{C} .{ }^{f}$ In a $1: 2$ mixture of $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ and CS_{2} at $-80^{\circ} \mathrm{C}$.

